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Abstract. Behaviours of classical and quantum particles in an infinitely deep flat well with
vniformly growing width are compared and examined for infinitely large instants of time. In
particular, the correspondence between certain classes of classical and quantum states is pointed
out and asymptotic effects of “squeezing’ of the momentum probability densities are derived.

1. Introducl;ion

The dynamics of a classical and a quantum particle in a potential well of infinite depth and
time-dependent width has become a subject of some interest since the pioneering papers
of Fermi and Ulam [1]. In their model, a particle bounces between two impenetrable rigid
walls one of which moves according to a given function of time, say L{¢). Much work had
been carried out on the model [2-5] when L{t) was pertodic and a chaotic behaviour of a
classical particle appeared. The quantized version of this classically chaotic model has been
the subject of efforts in the last few years [6—12] as well as its semiclassical limit [8, 12].

Of the problems related to the Fermi—Ulam model, the question for what functions
L{2) the corresponding Schrédinger equation can be solved exactly has also attracted much
attention [13-19]. Exact wavefunctions obeying suitable Dirichlet boundary conditions were
first found by Doescher and Rice {13] for the case of a uniformly expanding or contracting
potential well. All of the following studies [14-19] proved in many ways that other exactly
solvable cases are restricted to just a few motions of the well’s wall obeying L3 = 4,
where a = constant. This easily solvable second-order equation, as a special case (@ = 0),
contains the case solved in [13].

The simplicity of the model, with L{z) bemg a linear function of time, allowed us to
consider a number of interesting probiems. Among them we should mention: an analysis
of the properties of Berry’s phase in a moving boundary problem [11, 20], the prediction
of possible non-local effects appearing in such a situation [21-23] and the construction of
exact and semiclassical propagators [17,24-27].

The purpose of the present paper is to give further support to properties of systems

with moving boundaries. To our knowledge, the question raised in the title of our paper
has not been fully discussed in the existing literature. Some detailed results on the subject
are scattered in a few works [10, 14, 28, 29] ard have occasionally been obtained in other
studies. )
What we are about to present first are both classical and quantum formulae necessary for
the discussion of asymptotic positions, momenta and their probability distributions. Next,
we will contrast the classical behaviour of these quantities with their quantum. counterparts,
All our formulae are exact and as such are our final conclusions.
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2. Basic formulae

Let us consider a particle of mass m, with position x which belongs to the interval [0, L()]
with L = Ly + ut. The velocity u of the expansion is constant. Apart from the reaction of
this constraint no other forces act on the particle.

It is known [15] that by the appropriate transformation of x and ¢ the width of the
interval of admissible positions can be made time-independent and no forces appear in the
transformed equations of motion. In fact, when

_Lor
D)
and
_ A g, Lot
r(r)_fo 50 dt = o (1
then:

(i) the classical equation of motion
mi=20 x € (0, L{1)
with X - —%+4+2u when x=L(#} {2
and x* — —x when x=0
is transformed to the equation
my”" =0 where y&(0,Lo) and atthe boundaries y — —y'. 3

Here the dots mean derivatives with respect to the time z, while the apostrophes denote the
derivatives with respect to the new time 7. The momentum transforms in the following
way:
Lop ¥
p= m + umzz)- —(&)
where p = mx and § = my’. A solution of equation (3) can be found and it is of the form
((dy/dz)e=0 = ¥4 # O):

" y() = £ Lo[1+ (=)™ sgn(39)] — (= D*Py4(r — T)mosac ()
where

5 = 5o (114 sg0ILo = 230} ©®

Yo

Ly
AT = —na 7
T= o
mﬂ:MG%éﬂ) @®)

and here the symbol Int(x) is understood as the greatest integer not larger than x. Note that
Yo = Xp, ¥§ = %o — uxo/Lo and, when y; = 0, the solution of (3) is simply y(z(2)) = yo.
(ii) The quantum equation of motion

L0y RPely
ot T Tamoaat @
with ¥ (x, 1) =0 for x € (0, L{#)) transforms to
e B e

—= - ‘ (10)
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with ®(y, v) =0 for y & (0, Lg). Here & = Oy, with

_(LON? . muL(t)y*
o=(%) =5 )

The momentumn opefator transforms as in (4) and now p = —ik(3/9x) and p = —ih(B/Byj.
The general solution of (10) which fulfils the desired boundary conditions reads:

_ 12 -
® = Zﬂ:a”,q)" =(L£0) ;au sin (%) exp [—%Eﬂr(t)} (11)

with E, = #%7%n2/2mL2 and ¥, |a,|> = 1. Mean values of the operators y, p, y2 and p?
in the state i, which is a general solution of (9), are as follows:

0 _2Lo
o Zmz — 2

iL@ 2 Z "

_o Z |G l2 ZLE (= 1) Span
m? — 2

(p) = -—(;v
(12)

o
2

2
— ,’E 2 2 2 mtn
—(Lo) v (L(r)) Sl D"

where Sy, = a’.a,(dmn/(m* —n*)) exp(—i(E, — En)7(t)/%) and the symbol 3" denotes a
summation over odd values of m-+n. It follows from (1) that in the y—t plane the evolution
stops at |

{p*)

' L
(00} = —. (13)
171
This property considerably simplifies studies of asymptotic properties of both classical and

quantum uniformly expanding wells.
First of all it follows from (5} that

L
y(z(oo)) = 1Lo[1 — (~1)FT + (—I)ﬁfum)m (14)

where 8 = Int(|xp|/%). As can be seen from (14) y(z(oc)) does not depernd on yy = xp.
_Moreover, from (4) one has in the limit t — co

L YEeo))
Ly °
Since y/Lp € [0, 11 for 0 £ ¢ < co this result confirms the physical intuition that asymptotic

momenta must be positive and not larger than mu.
From (14) and (15) it follows that

plt — o0) = ppo, u) = %[1 - (—'1)'6]mu +‘(—1)5(|P0|)mod(mu) (16)

and p(t — o) depends solely on pg, while y(t — ©0) becomes via (15) a simple function
of p(t — o). In figure 1 the relation between p(t — o0) and pp given in (16} is
presented. The above observation facilitates calculations of the asymptotic form of the
{y, p)-probability density.

plit =+ o0)=m (15)
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Figure 1. Asymptotic values of the momentum p(f — oo) versus initial values of the momentum
po.

If at + = 0 an ensemble of classical particles in an expanding well is described by the
probability distribution function foy, 1), 0 € y £ Lg, —00 < p < 00, then from (14) and
(15) one gets

Jooly, P} = f dyedpod (y - %f)a(p — p{po, ¥} fo(yo, po)

and finally

Fur22) =8 (3= 22 3" (Ppot@homs = p) + Bpo(2hma Pl (17)

k=00

with y € [0, Lp), p € [0, mu), where Ppo(p) = fOL" fo{y, p)dy. For p ¢ [0, mu] the
probability distribution function foo(y, p) = 0. From (17) it readily follows that

yoo(y) TPFDO(TI%) (18)

where Py.oo(y) = [ foo(y, P)dp and Ppoo(p) = [ fooly, p)dy. Thus, the memory of
the initial position of the particles is lost in the asymptotzc state. It is seen that an expanding
well squeezes asympiotically the initial momenrum distribution. A very simple illustration
may be as follows.

If Poolp) = (1 — |pl/2Nmu)/2Nmu for p € [2Nmu, —2Nmu], N integer and
Ppo(p) = 0 outside this interval (2 ‘tent-like distribution’), then from (17) one gets

1
Proo(p) = pow for pe[0,mu] (19)

0 otherwise .

3. Comparison of the classical and gquantem behaviour

It is interesting to compare with the above classical results the behaviour of quantum
particles.
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The quantum particle (QP) in the state @, defined in (11), and the classical particle
(CP) which moves with y; = 0 have, for arbitrary integer %, time-independent values of
(@ ]y*[P,) and y*, respectively.

Since y, = 0 means that # 2 Xo = uxp/Lo 2 0, a CP does not collide with boundaries
of the well and therefore has constant momentum as well. A QP in the state ®, has time-
independent (®,|p|Pa), but {®,|p?|®,) is already time-dependent. This is because a Qp
in the state @, may be viewed as representing an ensemble of CPs with a spectrum of
momenta lying outside the interval [0, mu] and thus losing energy during collisions with
the moving boundary (equation (3)). In a different context, this and related phenomena can
be considered as a consequence of a non-local character of quanturmn mechanics [21-23].

Solutions @, of (10) and y; = 0 of (3) are two special states, quantum and classical,
which belong:

the first, to the family of quantum solutions ¢(y,)): @(».0) = ¢*(y,t — o0),
and thus |@(y,0)|> = |lp(y,t — oo}®. This can be accomplished by putting a, =
rp exp(iE,T(00)/2n), rp = ry in (11). When only one of the r,’s is different from zero
in (11), then ¢ equals &, up to a factor of modulo 1;

the second, to the first of two snbfamilies of classical initial conditions: yj = 2bu or
¥4 = 2bu — 2you/Lo with |b| being zero or an integer. y, = 0 is found in the first
subfamily when b = 0. It follows from what was said so far, that in the state ¢ the equality
{¥%) 120 = (¥*);- 00 holds, while the classical motion which starts from the above given two
subfamilies of initial conditions has the property: y§ = y*(r = o0).

Generally speaking, in the state v, which is a superposition of the &, ’s, the mean values
of y* are time-dependent via the oscillating factors exp(—i(E, — E,,)t(¢)/h). Oscillations
vanish in the limit 1 — oo, ie for T = Lp/u. Mean values of the powers of p
depend additionally on time via powers of 1/L(z). The relation {p*) = (mu/Lg)*{3%)
is asymptotically valid in analogy to the classical case.

In figures 2 and 3 the time dependence of the mean values of x and p together with
the corresponding mean-square deviations (Ax?)!/2 and (Ap?}!/* are presented for some
arbitrary choice of the initial state .

It is interesting to calculate for a QP the p probability density when t — oo and to
compare the result with (18). Obviously

Py oo(¥) = |®(y, T(c0))? (20)
while
Porp) =C(p, I (21}
where ;
' Lin ' .
C(p,t) = (2nn)~V/* f exp(—ipx /R)Y (x, £)dx . (22)
0

Taking ¥ = O~'® one gets

L 1/2 ) U]
Clp.n= (2::?(20) oXP [_IZRmZL(t):I

Ly
X f exp{imuL()y/Lo — p/mul*/2R}®(y, t(1)) dy . - (@23)
0

For finite ¢ the integral in (21) is expressible in terms of Fresnel integrals and therefore the
limit # - 0o may be performed effectively.
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t/r{o0)

Figure 2. Mean values (x) (full curve) and () £ 1 (x? — (x)%)1/2 (dots) in units of Lo as
functions of time. Amplitudes a,, which characterize the state v via (11), are real and equal
to a, = N~Y2exp(—yln — ngl), T2, a2 = 1. The full line presents the expanding boundary:
L=Lop+ut, Lg=3u=025A=lm=,np=2and ¥y = 1.5,

8

-4

2
t/7{ec)

Figure 3. Mean values: {p} (full curve) and {p) &= £ (p? - (p}*}%/2 (dots) in units of mu as
functions of time. The state 3 and the values of parameters are the same as in figure 2,

Using the following representation of the Dirac 4-function:
8(z) = (@) e /4 lim kel
k=0

in the limit £ = o equation (23) takes the form

/2 Ly
Cpt >0y = (22) e [ 5(y - 2200, ctonay.
0

mu me

Finally

L

Ppoo(p) = —
nmu

2
o (‘31“9, t(oc))‘ 24)
mi
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-2

" p/mu

Figure 4. Initial momentum probability density P, 3{],(;9) for ¥(x,t = 0) = 1,0',,_3(x t=0)
(full curve) and resulting asymptotic quantum momentum probability density Pp °,;(p) (broken
curve). The dotted curve represents asymptotic classical momenta probability density when
at ¢+ = 0 a classical ensemble of particles had momenta probability density equal to P, ,(p)
Lo=B.e=1lm=1Lk=1) .

when p € [0, mu] and Py oo(p) =0 for p from outside this interval.

For a QP the relation given in (18) follows from (20) and (24). Sgueezing of the
momentum probability takes place in quantum dynamics as well. For a QP one always has
Py eol0) = Pp oo (mu) = 0 and this is the purely quantum etfect.

Let us compare initial and final momentum probability distributions for two special
cases. ) ’

(i) It follows from (21) and (24) that when at t = 0 the particle is in one of the ¥,
states (1, = O~1d,), then )

P (p) = ( i ) 25)

e i : .
We calculated P;f’g(p) by performing numerically the integration in (22). In figure 4 both
initial and final (asymptotic) quantum momentum probability densities are presented. Both

curvcs are evidently invariant with respect to the transformation of variable p: p — mu—p.
For F’lp ao{p) this property is immediately visible in (25) while, for any finite ¢, the relation

C(n)(p, n= (_l)nHCm)(mu —p.b) liL)(ptmu 2) /7] (26)
which can be derived from the definition given in (22) explains the symmetry Piﬁf‘r)(p) =
P(") (mu — p).

(ii) in the second example we assume that at ¢ = O the particle is in the state &, (see
equation (11)). In this case we have from (21) and (22)

2 n
Py = 2 9 (?_{f_) 1— (—1)"cos(pLo/R) @n
7hLg \ Lg [(p/i‘"l)2 - (””/LU)Z]z

Now, the knowledge of P (p) requires calculations of

Ly
a = /0 Yr(x, 1 =0)Pp(x,t =0)dx.
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Figure 5. The same as in figure 4, bot 1 (x. ¢ = 0) = Pp=3(x. t = 0).

In figure 5 initial and asymptotic p distributions are presented for this case.

In both examples it was also assumed that initial p distributions describe ensembies
of ¢ps. Using (17), classical asymptotic p distributions were calculated and they are shown
in figures 4 and 5 as well. Quantum interferences led to the ‘hole burmng effects’ in classical
distributions.

The classical asymptotic p distribution Py o0(p) whxch has the form (see equation (17})

Ppoo(p) = Z [Ppo(2kmi — p) + Py o(2kmu + p)] (28)
k=—t0
also has the symmeftry menticned in the example (i) if Ppol(p) does have this symmetry.
This fact can be deduced from (28) and is clearly seen in figure 4.

One may ask now whether and when the classical time evolution of the P(")(p) which
starts from P 20 ( p) given in example {1), conserves (as quantum evolution in this case does)
the symmetry (p) (mu - p).

It is not dlfﬁcult to ﬁnd out that, if in an ensemble of classical particles there are at
¢t = 0 only pairs of particles having positions and momenta related in the following way:
xi10 + %20 = Lo and pio + piao = mu (1 and 2 labels particles in the ith pair), then
the above-mentioned symmetry of Plfﬁ) (p) is conserved (particles from a pair coilide with
boundaries simultaneously). Our assumption on positions and momenta of particles in a
pair means on the other hand, however, that the classical ensemble at ¢ = 0 is characterized
by the probability distribution fonction fy(x, p) which is invariant with respect to two
simultaneous transformations: x — Lg —x and p — mu — p. Such a property has the
Wigner distribution function derived from the state ¥, of example (i).

In this case we have

PIy(x, p)——fex (— ‘”z) Ynx + DY — D) de @9)

where the integration is in the range [—x, x] when x < Lg/2 and {x — Lg, Ly — x] when
x 2 Lo/2. For ¥,(x, 0) = exp(imux?/2aLy) 8, (x, 1), ®,(x,0) = (2/Lo)?sin(nmx/Lg),
equation (29) has the desired property Py o(x, p) = Py.o{Lo—x, mu— p). We may assume,
if we like, that the classical ensemble is at r = 0 in a Wigner state and the analogy between
classical and quantum cases is still more pronounced.
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Unlike the case of a classical well, in the asymptotic states of a quantum well information
on the initial distribution of y (or x) and p is obviously still present via the function .
This is also the quantum effect and, needless to say, it stems from the fact that a QP cannot
be seen as just an ensemble of CPs, but is what is called a ‘coherent ensemble’.

4. Concluding remarks

In this paper we have derived exact classical and quantum-mechanical formulae for several
quantities characterizing motion of a particle in an expanding potential well. In both
approaches the problem was reduced by means of a generalized canonical transformation
to a simpler one with a non-moving boundary. Contrary to the original Fermi—Ulam model
its simplest version used here allowed us to get exact predictions as to the behaviour of
classical and quantum states of the particle for any instant of time, even at infinity.

Some of our conclusions are distinguished in the text with italics. ' Among them one
can find few intuitively obvious statements. In order to prove them formally one needs,
however, exact formulae given in this work. Qur other results relate the behaviour of the
particle in the expanding well to some effects known in other areas of physics. Thus, though
our study completes known facts about one of the variants of the Fermi—Ulam model, the
conclusions derived in this paper are valid in a much wider context.

Finally, we should mention that some aspects of the case of the contracting well and the
validity of the sudden or adiabatic approximations for the model could have been discussed
within the scope of our formalism. These questions, however, have already been considered
in a different way [27, 28].
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