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Asymptotic behaviour of a particle in a uniformly 
expanding potential well 

S T Dembihski, A J Makowski and P Peptowski 
Institute of Physics, Nicholas Copemicus University, ul. Grudd@dzka 5. 87-100 Tom", Poland 

Received 30 September 1994 

Abstraet Behaviours of classical and quantum particlei in an infinitely deep flat well with 
uniformly growing width are compared and examined for infinitely large illstants of time. In 
particular, the correspondence between certain classes of classical and quantum states is pointed 
out and asymptotic effects of 'squeezing' of the momentum probability densities at derived. 

1. Introduction 

The dynamics of a classical and a quantum particle in a potential well of infinite depth and 
time-dependent width has become a subject of some interest since the pioneering papers 
of Fermi and Ulam [l]. In their model, a particle bounces between two impenetrable rigid 
walls one of which moves according to a given function of time, say La). Much work had 
been carried out on the model [Z-51 when L(t)  was periodic and a chaotic behaviour of a 
classical particle appeared. The quantized version of this classically chaotic model has been 
the subject of efforts in the last few years [6-121 as well as its semiclassical limit [S, 121. 

Of the problems related to the Fermi-Ulam model, the question for what functions 
L( t )  the corresponding Schrodinger equation can be solved exactly has also attracted much 
attention [ 13-19]. Exact wavefunctions obeying suitable Dirichlet boundary conditions were 
first found by Doescher and Rice [13] for the case of a uniformly expanding or contracting 
potential well. All of the following studies [14-191 proved in many ways that other exactly 
solvable cases are restricted to just a few motions of~the well's,wall obeying L 3 i  = a, 
where a = constant This easily solvable second-order equation, as a special case (a = 0), 
contains the case solved in [13]. 

The simplicity of the model, with L( t )  being a linear function of time, allowed us to 
consider a number of interesting problems. Among them we should mention: an analysis 
of the properties of Berry's phase in a moving boundary problem [ll,20], the prediction 
of possible non-local effects appearing in such a situation [21-231 and the construction of 
exact and semiclassical propagators [17,24-271. 

The purpose of  the^ present paper is to give further support to properties of systems 
with moving boundaries. To our knowledge, the question raised in the title of our paper 
has not been fully discussed in the existing literature. Some detailed results on the subject 
are scattered in a few works [lo, 14,28,29] and have occasionally been obtained in other 
studies. 

What we are about to present first are both classical and quantum formulae necessary for 
the discussion of asymptotic positions, momenta and their probability distributions. Next, 
we will contrast the classical behaviour of these quantities with their quantum counterparts. 
All our formulae are exact and as such are our final conclusions. 
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2. Basic formulae 

Let us consider a particle of mass m,  with position x which belongs to the interval [0, L ( t ) ]  
with L LO + ut .  The velocity U of the expansion is constant. Apart from the reaction of 
this constraint no other forces act on the particle. 

It is known [15] that by the appropriate transformation of x and t the width of the 
interval of admissible positions can be made timeindependent and no forces appear in the 
transformed equations of motion. In fact, when 
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Lox y = -  

and 

then: 
(i) the classical equation of motion 

m i  = 0 
with i + -i +2u  when x = L ( t )  (2) 

x E (0, L ( t ) )  

and X -+ -i when x = O  
is transformed to the equation 

my" = 0 where y E (0, LO) and at the boundaries y' + -y' . (3) 
Here the dots mean derivatives with respect to the time t ,  while the apostrophes denote the 
derivatives with respect to the new time r. The momentum transforms in the following 
way: 

Lo A z = -  
lY;ll 

and here the symbol Int(x) is understood as the greatest integer not larger than x .  Note that 
yo = X O ,  y;l = i o  - uxo/Lo and, when y; = 0, the solution of (3) is simply y(s(t)) = yo. 

(ii) The quantum equation of motion 
a@ ii2 a 2 @  
at 2m 8x2 

3- = 

with @ ( x ,  t )  =_ 0 for x g (0, L ( t ) )  transforms to 

(9) 
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with Q(Y, 5 )  = 0 for y (0, LO). Here Q =U@, with 

The momentum operator wansforms as in (4) and now p = -ifi(a/ax) and 3 = -ih(a/ay). 
The general solution of (10) which fulfils the desired boundary conditions reads: 

with E, = ?i2z2nZ/2mL; and C, [a,I2 = 1. Mean values of the operators y ,  p ,  yz and p z  
in the state @, which is a general solution of (S), are as follows: 

Lo 2L0- sma 
(y) = 1 - 71- 

"#In 

where S,,,, = aia,(4mn/(m2 -n2))exp(-i(E, - E,)r(t)/h) and the symbol 2 denotes a 
summation over odd values of m+n. It follows from (1) that in the y-r plane the evolution 
stops at 

(13) 

This property considerably simplifies studies of asymptotic properties of both classical and 
quantum uniformly expanding wells. 

Lo 
5(CO) = - . 

U 

First of all it follows from (5) that 

(14) 
y(r(O0)) = $o[l - (-1)flI + ( - l ) f l~( lxol)mo& Lo . 

where B = Int([xol/u). As can be seen from (14) y(r(co)) does not depend on yo = xo. 
Moreover, from (4) one has in the limit t -+ 00 

Since y/Lo E [0, 11 for 0 < t c CO this result confirms the physical intuition that asymptotic 
momenta must be positive and not larger than mu. 

From (14) and (15) it follows that 

PO --f 00) = P(P0, U) = +[l - (-1)flImu +~-l~fl~lPol)mod~mu~ (16) 

and p ( t  -+ CO) depends solely on PO, while y(t 3 CO) becomes via (15) a simple function 
of p ( t  -+ 00). In figure 1 the relation between p( t  -+ 00) and po given in (16) is 
presented. The above observation facilitates calculations of the asymptotic form of the 
(y , p)-probability density. 
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2 -  

z 

Figure 1. Asymptotic values ofthe momentum p(1 -+ m) versus initial values of the momentum 
PI]. 

& a 
-1 

-2 

If at t = 0 an ensemble of classical particles in an expanding well is described by the 
probability distribution function fo(y ,  p).  0 < y < Lo, -00 < p 4 00, then from (14) and 
(15) one gets 

. 

and finally 

with y E to, Lo], p E LO, mu], where Pp,o(p) = ./? fo(y ,  p )  d y .  For p 6 10, mu] the 
probability distribution function f m ( y ,  p )  0. From (17) it readily follows that 

where PY.,(y) = i-: f&. P )  d p  and P , d p )  = 1: &Cyr p)  d y .  Thus, the m e m v  of 
the initial position of the particles is lost in the asymptotic state. It is seen that an expanding 
well squeezes asymptotically the initial momentum distribution. A very simple illustration 
may be as follows. 

If P,.o(p) = (1 - IpI/ZNmu)/ZNmu for p E [ZNmu,--ZNmu], N integer and 
PP.o(p) = 0 outside this interval (a ‘tent-like distribution’), then from (17) one gets 

for p E [O, mu] 

otherwise. 

1 

3. Comparison of the classical and quantum behaviour 

It is interesting to compare with the above classical results the behaviour of quantum 
particles. 
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The quantum particle (QP) in the state Qn defined in (II), and the classical particle 
(CP) which moves with y;l = 0 have, for arbitrary integer k, time-independent values of 
(Qnlyk[an) and y k ,  respectively. 

Since y;l = 0 means that U .io = u,xo/Lo > 0, a CP does not collide with boundaries 
of the well and therefore has constant momentum as well. A QP in the state Qn has time- 
independent (QnIp[%),  but (Qalp'l@,J is already time-dependent. This is because a QP 
in the state Qn may be viewed as representing an ensemble of CPS with a spectrum of 
momenta lying outside the interval [O, mu] and thus losing energy during collisions with 
the moving boundary (equation (3)). In a different context, this and related phenomena can 
be considered as a consequence of a non-local character of quantum mechanics [21-231. 

Solutions Qn of (10) and y; = 0 of (3) are two special states, quantum and classical, 
which belong: 

the first, to the family of quantum solutions (o(y,t)): p(y,O) = 'p*(y,t + CO), 
and thus Ip(y,O)I' = I(o(y,t + w)I2. This 'can be accomplished by putting a, = 
rnexp(iE,t(co)/2h), r, = r," in (11). When only one of the r,'s is different from zero 
in (ll), then 'p equals Qn up to a factor of modulo 1; 

the second, to the first of two subfamilies of classical initial condifions: yh = 2bu or 
yh = 2bu - 2you/Lo with Ibl being zero or an integer. y;l = 0 is found in the first 
subfamily when b = 0. It follows from what was said so far, that in the state 'p the equality 

= (yk)r-,m holds, while the classical motion which starts from the above given two 
subfamilies of initial conditions has the property: y: = yK(t + CO). 

Generally speaking, in the state @, which is asupelposition of the Os's, the mean values 
of yk are time-dependent via the oscillating factors exp(-i(E, - E&(t)/h). Oscillations 
vanish in the limit t + CO, i.e. for r = Lo/u. Mean values of the powers of p 
depend additionally on time via powers of I/L(t). The relation ( p k )  = (mu/LO)'(y') 
is asymptotically valid in analogy to the classical case. 

In figures 2 and 3 the time dependence of the mean values of x and p together with 
the corresponding mean-square deviations (AX')''' and ( A P ' ) ' ~  are presented for some 
arbitrary choice of the initial state @. 

It is interesting to calculate for a QP the p probability density when t + CO and to 
compare the result with (18). Obviously 

Py.m(Y) = IQ(Y, r(CO))12 (20) 

pp.t(P) = ( U P ,  01' (21) 

while 

where 
u t )  

~ ( p ,  t )  = (2irh)-1/2 l exp(-ipx/h)@(x, t )  d ~ .  (22) 

Taking 1/1 = U-'Q one gets 

x lL"exp(imuL(r)[y/Lo - p/mu]'/2k)Q(y, r ( t ) )dy.  (23) 

For finite t the integral in (21) is expressible in terms ofFresnel integrals and therefore the 
limit t + 00 may be performed effectively. 
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I 
0 1 2 3 4 

t/+) 

Figure 2. Mean values (1) (full curve) and (x) & 4 (xz - ( x ) ~ ) ' / ~  (dots) in units of 4, as 
functions of time, Amplitodes a., which chmcterize fhe state @ via ( I  I), are real and equal 
to n. = N-'/2eexp(--yln - no[) ,  En a: = I .  The full line presents the expanding boundary: 
L = LQ + u t .  LQ = 3, U = 0.25.h = l , m  = I,no = 2  and y = 1.5. 

Q 1 2 3 4 

t/7(-) 

Figure 3. Mean values: ( p )  (full curve) and ( p )  i +(p' - 
functions of time. The s t a t  @ and the values of panmeten are the same si in figure 2. 

(dots) in units of mo as 

Using the following representation of the Duac &function: 
-in/4 lim k e i W  S(z) = ( X I -  e X-rm 

in the limit t + 00 equation (23) takes the form 

C ( p , t +  m)= ( - mu ) e'"/' 6'" S ( y  - g) @ (y. r (m)) dy . 

Finally 
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Figure 4. INtial momentum probability density Pj;:,(p) for $ ( x ,  I = 0) = $"=,(x. t = 0) 
(full curve) and resulting asymptotic quantum momentum probability density P f L ( p )  (broken 
curve). The dotted curve represents asymptotic clnssical momenta probnbility density when 
at f = 0 a clmical ensemble of panicles had momenta probability density equal to PfA(p) 
(Lo = 15. U = 1. m = 1,  Tt = I ) .  

when p E [0, mu] and Pp.,(p) 
For a QP the relation given in (18) follows from (20) and (24). Squeezing of the 

momentum probability takes place in quantum dynamics as well. For a QP one always has 
P,,,,(O) = P,,,(mu) = 0 and this is the purely quantum effect. 

Let us compare initial and final momentum probability distributions for two special 
cases. 

(i) It follows from (21) and (24) that when at t = 0 the particle is in one of the en 
states (en = O-lGn), then 

0 for p from outside this interval. 

We calculated P,(yi(p) by performing numerically the integration in (22). In figure 4 both 
initial and final (asymptotic) quantum momentum probability densities are presented. Both 
curves are evidently invariant with respect to the transformation of variable p :  p + mu - p .  
For Pjr&(p) this property is immediately visible in (25) while, for any finite t ,  the relation 

(26) 
which can he derived from the definition given in (22) explains the symmehy P;;'(p) = 
Pf'(mu - p ) .  

(ii) in the second example we assume that at t = 0 the particle is in the state G?" (see 
equation (11)). In this case we have from (21) and (22) 

c(")(,,, t )  = ( - ~ ) " + I C ( " ) ( ~ ~  - p ,  t )  eliL(l)(-p+mu/2)/hl 

1 - (-I)"cos(pLo/fi) 

,;Lo (2) [ ( ~ / f i ) *  - ( n n / ~ o ) 2 ] ~  . 
(") P,,,(P) = - 

Now, the knowledge of Pf&)  requires calculations of 

(27) 
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p/mu 

Figure 5. The same as in hgure 4. but $ ( x .  I = 0) = Q.=,(x. f = 0). 

In figure 5 initial and asymptotic p distributions are presented for this case. 
In both examples it was also assumed that initial p distributions describe ensembles 

of CPS. Using (17), classical asymptotic p distributions were calculated and they are shown 
in figures 4 and 5 as well. Quantum intelferences led to the ‘hole burning effects’ in classical 
distributions. 

The classical asymptotic p distribution Pp,,(p) which has the form (see equation (17)) 
m 

P,,,(P) = [PP.o(2kmu - P )  + PP,o(2kmu + P)J (28) 
K=-m 

also has the symmetry mentioned in the exampIe (i) if P,,,o(p) does have this symmetry. 
This fact can be deduced from (28) and is clearly seen in figure 4. 

One may ask now whether and when the classical time evolution of the P,$)(p), which 
starts from Pjyi(p) given in example (i). conserves (as quantum evolution in this case does) 
the symmetry: ~ , $ ( p )  = Pf;(mu - p ) .  

It is not difficult to find put that, if in an ensemble of classical particles there are at 
t = 0 only pairs of particles having positions and momenta related in the following way: 
xi1.0 + xiz.0 = LO and pi1.0 + pi2.0 = m u  (1 and 2 labels partides in the ith pair), then 
the abovementioned symmetry of Pj?(p) is conserved (particles from a pair collide with 
boundaries simultaneously). Our assumption on positions and momenta of particles in a 
pair means on the other hand, however, that the classical ensemble at t = 0 is characterized 
by the probability distribution function fo(x, p )  which is invariant with respect to two 
simultaneous transformations: x -+ LO - x and p -+ mu - p.  Such a property has the 
Wigner distribution function derived from the state pa of example (i). 

In this case we have 

where the integration is in the range [ -x .  XI when x < Lo12 and [x  - Lo, LO - X I  when 
x L o p .  For 0) = exp(imux2/2hLo)@P.(x, 0), Qn(x. 0) = (Z/Lo)”’sin(nnx/lo), 
equation (29) has the desired properly P,,o(x, p )  = P,,o(Lo-x,  mu-p) .  We may assume, 
if we like, that the classical ensemble is at t = 0 in a Wigner state and the analogy between 
classical and quantum cases is still more pronounced. 
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Unlike the case of a classical well, in the asymptotic states of a quantum well information 
on the initial distribution of y (or x) and p is obviously still present via the function a. 
This is also the quantum effect.and, needless to say, it stems from the fact that a QP cannot 
be seen as just an ensemble of CP.~, but is what is called a 'coherent ensemble'. 

4. Concluding remarks 

In this paper we have derived exact classical and quantum-mechanical formulae for~several 
quantities characterizing motion of a particle in an expanding potential well. In both 
approaches the problem was reduced by means of a generalized canonical transformation 
to a simpler one with a non-moving boundary. Contrary to the original Fermi-Ulam model 
its simplest version used here allowed us to get exact predictions as to the behaviour of 
classical and quantum states of the particle for any instant of time, even at infinity. 

Some of our conclusions are distinguished in the text with italics. 'Among them one 
can find few intuitively obvious statements. In order to prove them formally one needs, 
however, exact formulae given in this work. Our other results relate the behaviour of the 
particle in the expanding well to some effects known in other areas of physics. Thus, though 
OUT study completes known facts about one of the variants of the Fermi-Ulam model, the 
conclusions derived in this paper are valid in a much wider context. 

Finally, we should mention that some aspects of the case of the contracting well and the 
validity of the sudden or adiabatic approximations for the model could have been discussed 
within the scope of our formalism. These questions, however, have already been considered 
in a different way [27,28].  
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